Download e-book for kindle: Aus dem Nachlass von R. Brauer by Jørn Børling Olsson

By Jørn Børling Olsson

Show description

Read or Download Aus dem Nachlass von R. Brauer PDF

Similar algebra books

Get Lernbuch Lineare Algebra und Analytische Geometrie: Das PDF

Diese ganz neuartig konzipierte Einführung in die Lineare Algebra und Analytische Geometrie für Studierende der Mathematik im ersten Studienjahr ist genau auf den Bachelorstudiengang Mathematik zugeschnitten. Die Stoffauswahl mit vielen anschaulichen Beispielen, sehr ausführlichen Erläuterungen und vielen Abbildungen erleichtert das Lernen und geht auf die Verständnisschwierigkeiten der Studienanfänger ein.

B.L. Feigin (Contributor), D.B. Fuchs (Contributor), V.V.'s Lie Groups and Lie Algebras II PDF

A scientific survey of all of the easy effects at the idea of discrete subgroups of Lie teams, provided in a handy shape for clients. The ebook makes the idea available to a large viewers, and may be a regular reference for a few years to come back.

Additional resources for Aus dem Nachlass von R. Brauer

Example text

P I ) form a vector space basis for A. Proof. It is a consequence of the Adem relations that the operations Sq I (resp. the operations P I ), I admissible, span the graded vector space A. In fact, let I = (i1 , . . , in ) (resp. I = ( 0 , i1 , 1 , . . , in , n )) be an admissible sequence. Its moment is defined to be i1 + 2i2 + · · · + nin (resp. i1 + 1 + 2(i2 + 2 ) + · · · ). If I is not admissible there exists h, 1 ≤ h ≤ n − 1 such that ih < 2ih+1 . Using the Adem relations one gets: [ih /2] Sq I = t Sq I Sq ih +ih+1 −t Sq t Sq I , 0 where t ∈ F2 , 0 ≤ t ≤ [ih /2], I = (i1 , .

In these formulas Sq 0 (resp. P 0 ) for p = 2 (resp. p > 2) is understood to be the unit. The mod p cohomology H ∗ (X; Z/p) of a space X will be denoted by H ∗ X ˜ ∗ X. 1 Theorem (Steenrod, Adem). For any space X, H ∗ X is in a natural way a graded A-module. Classically, β (Sq 1 if p = 2) acts as the Bockstein homomorphism associated to the sequence 0 → Z/p → Z/p2 → Z/p → 0. E. Steenrod constructed the operations Sq i and the operation P i , and J. Adem showed that the Adem relations above act trivially on the mod p cohomology of any space.

Power algebras can be used to define the action of the Steenrod algebra on H ∗ (X). In this section we describe precisely the algebraic connection between power algebras and unstable algebras over the Steenrod algebra. This clarifies the role of the power maps γ. Again let F = Z/p be the field of p elements where p ≥ 2 is a prime. If V is a F-vector space with basis x1 , . . 1) V = Fx1 ⊕ · · · ⊕ Fxn Let Vec be the category of F-vector spaces and F-linear maps. The zero-vector space is denoted by V = 0.

Download PDF sample

Aus dem Nachlass von R. Brauer by Jørn Børling Olsson

by Jeff

Rated 4.82 of 5 – based on 46 votes